BOUNDING NEGATIVE ENERGYWITH QUANTUM INFORMATION, CAUSALITY AND A LITTLE BIT OF CHAOS

based on arXiv: I 706.09432 with:

Srivatsan Balakrishnan, Zuhair Khandker, Huajia Wang

Tom Faulkner
University of Illinois at Urbana-Champaign

NEGATIVE ENERGY DENSITY

- Globally energy in relativistic QFT is positive (above vacuum), but local energy density can be negative due to quantum fluctuations
- How negative?
- Why is negative bad?

some local negative energy density

Answer I (gravity) - you can use it to build time machines when coupling the QFT to gravity

Answer 2 (QFT) - violates micro-causality

- violates quantum information bounds

THE QUANTUM NULL ENERGY CONDITION (QNEC)

- Classical field theory, Null Energy Condition (NEC):

$$
T_{u u}(y) \sim\left(\partial_{u} \phi\right)^{2} \geq 0 \quad u=\text { light-like coordinate }
$$

- Quantum mechanics: violated by quantum fluctuations, but:

$$
\left\langle T_{u u}(y)\right\rangle_{\psi} \geq \frac{\hbar}{2 \pi \delta a} \frac{d^{2} S_{E E}\left(A_{u}\right)}{d u^{2}}
$$

Bousso, Fisher, (Koeller), Leichenauer, Wall `I5

Proof: free fields

A GENERAL PROOF OFTHE QNEC?

- Links many different areas of study:

emergence of gravity spacetime from QFT via AdS/CFT??

THINGSTO KEEP IN MIND

- The QNEC is a conjectured property of all QFTs (no gravity)
- We will work in flat space, although should extend to QFTs in curved space
- We will work with general QFTs with an interacting UV fixed point and $d>2$
- We start our story with the ANEC ...

TWO PATHSTOTHE ANEC

THE ANEC

-The averaged NEC: $\quad\left\langle\widehat{\mathcal{A}}_{u}(y)\right\rangle_{\psi} \geq 0$

$$
\widehat{\mathcal{A}}_{u} \equiv \int_{-\infty}^{\infty} d u^{\prime} T_{u u}\left(u^{\prime}, v^{\prime}=0, y\right)
$$

Null momentum: $\quad P_{u}=\int d y \widehat{\mathcal{A}}_{u}(y)$

- Predicted from GR (e.g. wormholes not traversable)
- Non trivial in Minkowski space ~ Hofman-Maldacena bounds

$$
\text { In } \mathrm{d}=3+\mathrm{I} \text { CFTs: } \frac{31}{18} \geq \frac{a}{c} \geq \frac{1}{3}
$$

METHOD I: ENTANGLEMENT

$$
\begin{gathered}
\mathcal{H}_{t o t}=\mathcal{H}_{A} \otimes \mathcal{H}_{\bar{A}} \quad \rho_{A}=\operatorname{Tr}_{\bar{A}}|\psi\rangle\langle\psi| \\
\rho_{A}=e^{-2 \pi H_{A}}
\end{gathered}
$$

- "Full" Entanglement Hamiltonian - better behaved in QFT:

$$
K_{A}=H_{A} \otimes 1_{\bar{A}}-1_{A} \otimes H_{\bar{A}}
$$

- Inclusion property:

$$
\begin{gathered}
B \subset A \\
K_{A}-K_{B} \geq 0
\end{gathered}
$$

MODULAR HAMILTONIANS

Relativistic QFT - inclusion at level of causal domains

- vacuum state: $\quad|\psi\rangle \rightarrow|0\rangle$
- A: half space (Rindler) cut $K_{A}^{0}=$ Boost operator
- B: small null deformation thereof
$K_{A}^{0}-K_{B}^{0}=\int d y \delta x^{u} \widehat{\mathcal{A}}_{u}(y)$
Uniform cuts = null momentum op.
Non-uniform cuts $=$ ANEC

$$
\longrightarrow \widehat{\mathcal{A}}_{u}(y) \geq 0
$$

METHOD II: CAUSALITY

Hartman, Kundu, Tajdini `l6
Space like separated operators: $[\mathcal{O}, \mathcal{O}]=0$

True for any state:

$$
\langle\psi|[\mathcal{O}, \mathcal{O}]|\psi\rangle=0
$$

Operator quenches:

$$
|\psi\rangle \equiv \psi(t=-i \delta)|0\rangle
$$

4 point function! (Bootstrap)

$$
f=Z^{-1}\langle 0| \psi \mathcal{O} \mathcal{O} \psi|0\rangle
$$

COMPUTABLE IN LIGHTCONE $f \propto\langle 0| \psi \mathcal{O} \mathcal{O} \psi|0\rangle$

Operator Product Expansion:

Light-cone Operator Product Expansion:

COMPUTABLE IN LIGHTCONE LIMIT $f \propto\langle 0| \psi \mathcal{O O} \psi|0\rangle$

- Indeed the ANEC operator dominates in this limit: $\quad \beta=2 \pi$

$$
f(s)=1-\kappa e^{2 \pi s / \beta}\left\langle\mathcal{A}_{u}\right\rangle_{\psi}+\ldots
$$

- Small correction in light-cone limit:

$$
\kappa \propto v^{d-2} \quad v \rightarrow 0
$$

- Same as chaos bound story for OTOC ...
Maldacena, Shenker, Stanford (MSS)
- What is this time, s?

SECRETLY AN OUT OFTIME ORDER CORRELATION $f \propto\langle 0| \psi O \mathcal{O} \psi|0\rangle$

Light cone limit achieved with boost after sending $\mathcal{O O}$ together

Defines:

$$
f(s)=\langle 0| \psi^{\dagger} \mathcal{O}(s) \mathcal{O}(s) \psi|0\rangle
$$

But reduced density matrix for A looks thermal w.r.t. boost operator!

$$
\beta=2 \pi
$$

Vacuum entangled like a thermofield double state:

SECRETLY AN OUT OFTIME ORDER CORRELATION $f \propto\langle 0| \psi O O \psi|0\rangle$

Reduce to thermal correlator
(Schwinger-Keldysh contour)

Can be used to extract
Commutator squared:

$$
\begin{gathered}
s \rightarrow s+i \beta / 4 \\
f(s) \ni \operatorname{Tr}\left(e^{-\beta H_{A} / 2}[\psi, \mathcal{O}(s)]\right)^{2}
\end{gathered}
$$

Boosts in imaginary time
become rotations around 'thermal circle'

BOUND ON CHAOS:

- Properties of chaos function: $f(s)=1-\epsilon e^{\lambda_{L} s}+\ldots$.

$\operatorname{Ims}= \pm \beta / 4$
$|f(s)| \leq 1$
(Cauchy-Schwarz, exact bound here!)

$$
\Longrightarrow \lambda_{L} \leq 2 \pi / \beta \quad \epsilon \geq 0
$$

Hartman, Kundu, Tajdini ` I6

- Here: $\quad f(s)=1-\kappa e^{2 \pi s / \beta}\left\langle\mathcal{A}_{u}\right\rangle_{\psi}+\ldots$

Saturates the Chaos bound, but ANEC: $\left\langle\mathcal{A}_{u}\right\rangle_{\psi} \geq 0$

BOUND ON CHAOS:

- Note that we did not need a large N limit - small parameter determined by kinematics of light-cone limit
- All (interacting) theories have same Lyapunov exponent in this limit - so this kind of Chaos not very discriminating
- Chaotic behavior: $\quad \psi(-i \epsilon)|0\rangle$

Disrupts local correlations/entanglement between A and \bar{A} that exist in vacuum. Results in exponential decay of boosted correlator:

$$
\langle\psi| \mathcal{O}_{A}(s) \mathcal{O}_{\bar{A}}(s)|\psi\rangle
$$

HOW ARETHESE RELATED??

Quick answer:I have no idea

COMBINING THEM

Inclusion property:

$$
\mathcal{D}(B) \subset \mathcal{D}(A)
$$

Causally disconnected:
$[\mathcal{D}(B), \mathcal{D}(\bar{A})]=0$

COMBINING THEM

entanglement Hamiltonian!

$$
\left[M_{B}, M_{A}\right]=0
$$

Now allow for non-local operators

Interesting ops:
$M_{B}(s)=\rho_{B}^{i s} \mathcal{O}_{B} \rho_{B}^{-i s}$
$M_{A}(s)=\rho_{\bar{A}}^{i s} \mathcal{O}_{\bar{A}} \rho_{\bar{A}}^{-i s}$

Note ρ_{B} reduced density matrix for: $|\psi\rangle\langle\psi|$

SETUP

Our new Chaos function is:
$f(s) \propto\langle\psi| M_{B}(s) M_{A}(s)|\psi\rangle$

Using results from Algebraic QFT, one can show that $f(s)$ has all the desired properties

Challenge: computing it!! New operators are non-local and messy objects light cone limit!

RESULT

- working in same ANEC light-cone limit for the operator insertions:

$$
\begin{aligned}
& f(s)=1-\kappa e^{2 \pi s / \beta} Q_{u}+\ldots
\end{aligned} \quad \kappa \ll 10 \text { (} \mathcal{Q}_{u}=\int_{\partial A}^{\partial B} d u^{\prime} T_{u u}\left(u^{\prime}, v^{\prime}=0, y\right)+\left(\frac{\delta S_{E E}\left(\rho_{A}\right)}{\delta X^{u}(y)}-\frac{\delta S_{E E}\left(\rho_{B}\right)}{\delta X^{u}(y)}\right) .
$$

Computed using a defect OPE in the replica trick
Evolving with ψ entanglement Hamiltonian \sim to leading order is the vacuum boost plus computable corrections ...

PROPERTIES:

- Causality: entanglement time evolution ~ thermal time for non-equilibrium states \sim analog KMS condition ~ analyticity in the thermal strip:

- Cauchy-Schwarz bound also applies, so by same logic arrive at QNEC: $\quad Q_{u} \geq 0 \quad \begin{aligned} & \text { Balakrishnan,TF, } \\ & \text { Khandker,Wang }\end{aligned}$

SOME INTUITION - CAUSALITY

Vacuum flow:
$\langle 0| M_{B}{ }^{0}(s) M_{A}{ }^{0}(s)|0\rangle$
Composition of two null separated boosts results in a mild null translation ...

SOME INTUITION - CAUSALITY

Vacuum flow:

$$
\langle 0| M_{B}{ }^{0}(s) M_{A}{ }^{0}(s)|0\rangle
$$

Composition of two null separated boosts results in a mild null translation ...

In excited state boosts slightly misalign and error amplified bigly.

NOTIME FOR ...

- AdS/CFT interpretation (this was the main motivation for this calculation - and also gave us the idea to use entanglement time evolution)
- Relation to bulk reconstruction (see above)
- The actual calculation (we used several new techniques for dealing with entanglement in QFT)
- Higher spin version of the QNEC

QUESTIONS FOR AUDIENCE

- Are there useful bounds one can derive using similar methods in CM context? (i.e. no relativistic symmetry)
- Entanglement spectrum/Hamiltonians studied in topological phases. What happens if you time evolve with such Hamiltonians?
- What are the implications for a bound on the acceleration of entanglement entropy? (i.e. the QNEC.)

